【论文辅导】
研究方法|如何在顶级管理学期刊发表论文:研究设计
研究设计
作为博士教育的一部分,大多数学者会选修研究方法课程,学习优秀研究设计的基本知识,包括设计应以提出的问题为驱动力,并应避免对有效性的威胁。因此,我们对研究性设计的讨论几乎没有新意。相反,我们关注的是导致AMJ投稿被拒的常见设计问题。研究人员在设计研究时面临的实际问题是(a)没有硬性和直接的规则可应用;将研究设计与研究问题相匹配,既是一门艺术,也是一门科学;(b)外部因素有时会限制研究人员进行最佳设计的能力(McGrath,1981)。
对管理学者来说,获取组织、组织中的人员和有关组织的丰富数据是一个重大的挑战,但是如果这些约束成为设计决策的核心驱动力,那么结果就是一篇文章,其中包含了对结果的许多似是而非的、可被替代的解释,最终导致拒稿和浪费大量的时间、精力和金钱。选择合适的设计对AMJ手稿的成功至关重要,部分原因是在修改过程中,研究的基本设计不能改变。在研究设计过程中所做的决定最终会影响到读者对研究结论的信任程度、研究结果对研究者论点的验证程度以及其他解释的可被低估的程度。在回顾过去一年被AMJ拒绝的文章时,我们发现了三个广泛的设计问题,它们是拒稿的常见来源:
(a)研究问题和研究设计之间不匹配,
(b)测量和操作问题(即结构有效性),
以及(c)不适当或不完整的模型规范。
研究问题与研究设计的匹配
横截面数据。横截面数据的使用是AMJ微观和宏观研究中常见的拒稿原因。拒稿并不是因为这些数据本身就有缺陷,也不是因为审稿专家或编辑对这些数据有偏见。之所以会这样,是因为许多(也许是大多数)管理研究问题都是隐性地来处理“变化”的问题——即使没有这样的框架。横截面数据的问题是,它们与隐性或显性处理因果关系或变化的研究问题不匹配,对这些问题的有力测试要求对某个变量进行多次测量,或对随后与另一个变量相连的一个变量进行操作。例如,研究诸如组织领导力变化对公司投资模式的影响,CEO或TMT股票期权对公司行为的影响,或行业结构变化对行为的影响等问题,都隐含着因果关系和变化。同样,当研究人员假设管理行为会影响员工的动机,人力资源管理实践会减少离职率,或者性别刻板观念会限制女性管理者的晋升时,他们也在潜在地测试变化,因此无法使用横截面数据进行充分的测试,无论这些数据是否来自现有数据库或通过员工调查收集的数据库。研究人员根本无法用横截面数据建立强有力的因果关系,也无法建立变化,无论他们使用何种分析工具。相反,需要纵向、面板或实验数据来推断变化或建立强有力的因果推论。例如,Nyberg、Fulmer、Gerhart和Carpenter(2010年)创建了一组数据,并使用固定效应回归来建模CEO—股东财务一致性(alignment)对未来股东回报的影响程度。这种数据结构允许研究人员控制跨公司异质性,并适当地模拟公司内部一致性的变化如何影响股东回报。
我们的观点不是贬低横截面数据的潜在有用性。相反,我们指出了认真做好研究设计和研究问题匹配的重要性,这样一个研究或一组研究就能够胜任测试感兴趣的问题。研究者应该在设计阶段问自己,他们的基本问题是否可以用他们选择的设计来回答。如果问题涉及变量之间的变化或因果关系(任何中介研究都意味着因果关系),那么横截面数据是一个糟糕的选择。
不适当的样本和程序。许多组织研究,包括发表在AMJ上的研究,都使用方便的样本、模拟的业务情况或人工任务。从设计的角度来看,问题是样本和程序是否适合所研究的问题。要求工作经验有限的学生参加他们做出执行决定的实验研究,可能不是检验性别刻板观念对男女管理者反应影响的适当方法。但是,让这些学生参加一个基于情境的实验,在这个实验中,他们选择了他们希望为之工作的经理,这可能是一个很好的样本和研究问题之间契合的安排。举例来说,关于研究问题与样本匹配的概念,是一项关于基于权益的薪酬评估的研究,其中Devers、Wiseman和Holmes(2007)使用了一个高管MBA学生的样本,几乎所有人都有权变薪酬的经验。在选择一个样本时,同样也要注意在匹配程序中进行,以研究问题。如果一项研究涉及一个展开的场景,其中一名被试在一段时间内做出一系列决定,对这些决定的反馈做出反应,那么随着时间的推移,通过收集数据,而不是在一个45分钟的实验室会议中包含一系列决定和反馈点,研究人员才会事半功倍。
我们的观点并不是说某些样本(如高管或学生)或程序天生就比其他样本好。事实上,在AMJ,我们明确鼓励实验研究,因为这是解决因果关系问题的一个极好的方法,而且我们认识到,重要的问题,特别是那些涉及心理过程的问题,往往可以同等地被大学生或组织员工很好地回答.
我们会问作者,他们的研究是在实验室还是在现场进行的,他们的样本和程序与他们的研究问题是否匹配,并在作品中清楚地说明为什么这些样本或程序是适当的。
测量和操作
研究人员一旦开始操作化构建,往往会想到有效性,但这可能为时已晚。在做出操作决策之前,开发新构念的作者必须清楚地阐明新构念的定义和边界,映射其与现有构念的关联,避免假设相同名称反映同一个构念而不同名称反映不同构念(即形似实异的谬误(jingle-jangle)[Block,1995])。未能定义核心构念常常导致文章中的不一致。例如,在撰写一篇论文时,作者可能最初只关注一个构念,如组织合法性,但后来会根据不同但相关的构念(如声誉或地位)进行讨论。在这种情况下,外审专家无法清楚地理解预期的构念或其理论意义。尽管发展理论并不是研究设计的一个特定组成部分,但手稿的读者和审稿人应该能够清楚地理解一个构念的概念意义,并看到它被适当测量的证据。
对现有测量方法的不当调整。对于收集实地数据的研究人员来说,一个关键的挑战是让组织和管理人员配合,调查长度常常是一个值得关注的问题。减少调查长度的一个简单方法是消除项目。然而,当研究人员从现有的量表中挑选项目(或者重写它们以更好地反映其独特的背景)而没有提供支持有效性的证据时,就会出现问题。有几种方法可以解决这个问题。首先,如果一篇文章包括新的(或实质性改变的措施),所有题项都应该包括在文章中,通常是在附录中。这有利于审稿人检查新方法的直观(face)有效性。其次,作者可以在一个子样本或完全不同的样本中包含这两个测量方案(原始的和缩短的版本),以证明它们之间的高收敛有效性。更好的方法是在法理上包含其他几个关键变量,以证明新的或改变的测量与其他相似和不同的构念相关。
现有测量方法的不当运用。另一种向评审者发出危险信号的方法是使用现有的测量来评估完全不同的构念。我们看到这个问题尤其发生在大型数据库的用户中。例如,如果先前的研究采取了一个行动,如改变形式(例如,由一家餐厅)作为战略改变的衡量标准,而其后的一篇论文使用了同样的行动(改变形式)作为组织搜索的衡量标准,那么我们对作者衡量其预期构念就很没信心。鉴于研究过程的累积性和渐进性,作者必须确定其新构念的唯一性、与现有构念的关系以及其可操作化的有效性。
共同方法偏差。我们看到许多被拒绝的AMJ文章,其中的数据不仅是横截面的,而且还通过一种共同方法进行评估(例如,一项调查将由一个人完成多个预测和标准变量)。共同方法偏差对观测相关性的解释构成严重威胁,因为这种相关性可能是由于测量方法(包括评分者效应、项目效应或背景效应)引起的系统错误偏差的结果。Podsakoff、MacKenzie、Lee和Podsakoff(2003)详细讨论了共同方法偏差,并提出了减少其偏差效应的方法(另见Conway和Lance,2010)。
AMJ文章中关键变量的测量和操作问题的含义远远超出了心理测量学。在概念层面上,对关键变量的草率和不精确的定义和操作威胁着从研究中得出的推论。如果底层结构的性质和度量没有很好地建立起来,读者对作者实际上测试了他们提出的模型几乎没有信心,而理性的外审可以为结果找到多个合理的解释。作为一个实际问题,不精确的操作定义和概念定义也使得难以定量地汇总研究结果(即进行元分析)。
模型制定
制定一个理论模型的挑战之一,是实际上不可能包括每一个可能的控制变量和中介过程,因为使用的数据库中可能不存在相关变量,或者因为组织限制了调查的长度。然而,在设计阶段对关键控制变量和中介过程的细致处理可以在审稿过程中提供可观的回报。
适当包含控制变量。适当的控制措施可以让研究人员从他们的研究中得出更明确的结论。研究可能会在控制措施太少或太多的情况下出错。控制变量应满足纳入研究的三个条件(Becker,2005;James,1980)。第一,由于明确的理论联系或先前的实证研究,人们强烈期望变量与因变量相关。第二,有一个强烈的期望,即控制变量与假设的自变量相关。第三,有一个逻辑上的原因,即控制变量在研究中不是一个更为中心的变量,无论是假设的还是中介的。如果一个符合这三个条件的变量被排除在研究之外,结果可能会有遗漏的变量偏差。然而,如果包含的控制变量不符合这三个测试,它们可能会包含过多自由度或偏向假设变量相关的结果(增加I型或II型错误),从而妨碍研究(Becker,2005)。因此,研究人员应该仔细考虑他们包括的控制变量,确保包括适当的控制变量,但排除多余的控制变量。
操作性中介。AMJ中的文章的一个独特特点是,它们被期望测试、构建或扩展理论,这种期望一般通过采取解释为什么一组变量是相关的形式来满足。但光靠理论是不够的,还必须对中介过程进行经验检验。模型中何时应该包含中介(以及哪些中介)的问题需要在设计阶段解决。当一个研究领域是新的,重点可能是建立两个变量之间的因果关系。但是,一旦建立了联系,研究人员就必须清楚地描述和衡量变量A影响变量B的过程。随着研究领域的成熟,可能需要包括多个中介。例如,变革型领导文献的一个优点是研究了许多中介过程(例如,LMX[Kark,Shamir & Chen,2003;Pillai,Schriesheim& Williams,1999;Wang,Law,Hackett,Wang,&Chen,2005]),但这一系列文献的一个弱点是,大多数中介变量,即使它们在概念上相互关联,但都是被单独研究的。通常,每一个都被视为管理行为影响员工态度和行为的独特过程,而其他已知的中介因素则不被考虑。如果不能评估已知的和概念上相关的中介,作者就很难说服外审他们的贡献是新颖的。
结论
尽管研究方法随着时间的推移而不断发展,但好的研究设计的基本原则几乎没有什么变化:将你的设计与你的问题相匹配,将构念定义与操作相匹配,仔细制定你的模型,使用具备构念有效性的测量方法或提供此类证据,选择适合你独特研究问题的样本和程序。AMJ投稿的设计问题被否定的核心原因不是它们是经过良好设计的研究,而后在执行过程中遇到了问题(尽管这无疑会发生);而是研究人员在设计阶段做出了太多妥协。无论研究者是依赖现有的数据库,在组织中积极收集数据,还是进行实验研究,妥协都是研究过程中的现实问题。挑战是不要妥协太多(Kulka,1981)。
研究设计的实用方法首先假设大多数单一的研究设计在某种程度上(在有效性方面)存在缺陷。因此,对于一个强大的研究设计来说,最好的方法可能不是消除对有效性的威胁(尽管在设计过程中它们肯定可以减少),而是进行一系列的研究。一系列研究中的每一项都有其自身的缺陷,但这些研究结合起来,可能比任何单独的研究都能提供更强的推论和更具概括性的结果。在我们看来,多个研究和多个样本设计在组织科学和AMJ投稿中的利用率极低。我们鼓励研究人员考虑使用多个研究或样本,每一个都解决了另一个的缺陷。这可以通过将实地研究与实验室实验相结合(例如Grant&Berry,2011),或者通过测试多个行业数据集来评估研究结果的稳健性(例如Beck、Bruderl和Woywode,2008)。正如AMJ的“投稿须知”中所指出的,包含多个研究的、即使超过40页(指导性篇幅)的文章也是可以接受的。
提交给AMJ的投稿中,有很大一部分要么从未送审,要么在评审过程中由于设计的缺陷而表现不佳(即所有三位外审专家都建议退稿),当然这并不意味着AMJ出版的文章都是完美的。他们的设计有时不能完全回答他们潜在的问题,有时使用的是未经验证的量表,有时模型制定存在错误。在每一项研究中排除所有可能的有效性威胁几乎不可能,如此的话实证研究可能永远无法开展(Kulka,1981)。但是,在研究工作的设计阶段诚实地评估对有效性的威胁,并采取措施通过改进单个研究或进行多个研究来最小化这些威胁,将大大提高最终取得积极结果的可能性
作者:
Joyce E. Bono
Universityof Florida
Gerry McNamara
MichiganState University
Copyrigets (c) 2003 Economic Administration University of China All rights reserved
The legality in the People's Republic of China registers the register - Ascend the mark:35893628-000-03-04-1 Address:FLAT/RM 2210 22/F NO.113 ARGYLE